
Poster: Efficiently Finding Minimal Failing Input in MapReduce
Programs

Muhammad Sohaib Ayub, Junaid Haroon Siddiqui
School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan

{15030039,junaid.siddiqui}@lums.edu.pk

ABSTRACT

Debugging of distributed computing model programs like MapRe-

duce is a difficult task. That’s why prior studies only focus on

finding and fixing bugs in early stages of program development.

Delta debugging tries to find minimal failing input in sequential

programs by dividing inputs into subsets and testing these subsets

one-by-one. But no prior work tries to find minimal failing input

in distributed programs like MapReduce. In this paper, we present

MapRedDD, a framework to efficiently find minimal failing input in

MapReduce programs. MapRedDD employs failing input selection

technique, focused on identifying the failing input subset in the sin-

gle run of MapReduce program with multiple input subsets instead

of testing each subset separately. This helps to reduce the number

of executions of MapReduce program for each input subset and

overcome the overhead of job submission, job scheduling and final

outcome retrieval. Our work can efficiently find the minimal failing

input in the number of executions equal to the number of inputs to

MapReduce program N as opposed to the number of executions of
MapReduce program equal to the number of input subsets 2N − 1

in worst case for binary search invariant algorithm to find minimal

failing input.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging;

KEYWORDS

Software Verification, Delta Debugging, MapReduce

ACM Reference Format:

Muhammad Sohaib Ayub, Junaid Haroon Siddiqui. 2018. Poster: Efficiently

Finding Minimal Failing Input in MapReduce Programs. In ICSE ’18 Compan-

ion: 40th International Conference on Software Engineering Companion, May

27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3183440.3195084

1 INTRODUCTION AND BACKGROUND

MapReduce[4] is a simple data-programming model designed for

processing of large data sets in the distributed manner using a large

number of commodity machines or nodes. MapReduce programs

are automatically parallelized, highly scalable, fault tolerant, I/O

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195084

scheduled and most of the real world tasks can be solved using

MapReduce. The runtime system of MapReduce takes care of par-

titioning the input data, scheduling execution of the program on

different nodes, fault tolerance and intra-node communication. This

allows programmers without any experience of distributed and par-

allel systems to easily utilize the resources of a large distributed

system.

Delta debugging[6] tries to systematically simplify the input

that leads the program to failure. It iteratively reduces the size of

input to smallest input that causes failure for easier debugging

of programs. It simplifies failure-inducing circumstances using a

variation of binary search to remove individual components of a

failing test case such that further removing any element will cause

failure to disappear. Minimizing delta debugging algorithm takes

failing test case due to the set of inputs or circumstances. It reduces

the set of inputs by successively testing the program using the input

subset obtained from the variation of the binary search algorithm

i.e. iteratively dividing the set of input into subsets. The algorithm

stops when a minimal failing set of inputs is reached and removing

any single input will cause failure to disappear.

In case of MapReduce programs, large number of inputs can

cause MapReduce program to fail. Finding the minimal failing in-

put in MapReduce programs will help the developers to easily

debug it. We have proposed a framework, called MapRedDD, for

efficiently finding minimal failing input extending delta debug-

ging algorithm. MapRedDD executes multiple inputs subsets in

single program execution and then finds the failing subset to re-

duce failure circumstances. Each execution of MapReduce program

requires submitting the job, uploading inputs to the cluster, execut-

ing MapReduce jobs and downloading the results from the cluster

which takes a lot of time and computation resources for a single

execution of MapReduce program. Therefore, MapRedDD reduces

the number of MapReduce executions for finding minimal failing

input.

2 TECHNIQUE AND IMPLEMENTATION

MapRedDD is a framework to efficiently find minimal failing input

in MapReduce programs. MapReduce program is tested with the

set of inputs which might result Failed, Passed or Unresolved test

case as shown in Figure 1. On the basis of the result of test case

execution, the MapRedDD algorithm reduces the set of inputs till it

finds the set of failing inputs from which removing any input will

cause failure to disappear.

For example, we have a program that counts the number of in-

tegers in the set of inputs and fails if any of the inputs is not an

integer. When we run delta debugging algorithm on failing the set

of input as shown in figure 2(a), the MapReduce program fails due

177

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Muhammad Sohaib Ayub, Junaid Haroon Siddiqui

Figure 1: Proposed Framework (MapRedDD)

to the presence of string “ABC" in the set of inputs. Delta debug-

ging algorithm divides the set of inputs into two subset sets, runs

MapReduce program on each of subset and tries to find the failing

subset of input. After finding the failing subset, delta debugging

again iteratively splits and checks the failing set of inputs into two

subsets until the minimal failing input is found, which is “ABC" in

this example. As we can see, the number of MapReduce executions

for finding the failing input is same as the number of input subsets

for N inputs i.e. 2N − 1 in worst case which is very expensive in

terms of resources as well as time.

Our proposed MapRedDD algorithm finds the minimal failing

input in an efficient way. It splits the input set into subsets in the

same way as delta debugging does. After that instead of testing each

of the subsets in separate MapReduce execution, MapRedDD passes

all the subsets in the single execution of MapReduce program as

shown in Figure 2(b). For this purpose, MapRedDD taint keys by

adding subset identification to the actual keys. This information

is used to identify the failing input subset after the execution of

MapReduce program. To handle these tainted keys by the MapRe-

duce program, MapRedDriver class is implemented which extracts

the subset information before sending these tainted keys and hence

original keys are sent to MapReduce program. In case of any failure,

MapReduce driver can report the failing subset information. Af-

ter the execution of map function, the subset information is again

added to the map function output so that no two keys from different

subsets should be sent to the same reducer and does not depict that

these are same keys. After receiving the tainted keys in the reduce

function, MapRedDD again extracts the subset information from

the keys same as it was done in map function. For any failure in

reduce function, MapRedDD can output the failure causing subset

information. After the reduce function, these keys are again added

to the output of the reduce function which is the output of the

program with tainted keys. If MapRedDD is unable to find any

failure in the complete execution of MapReduce program i.e. in all

the input subsets of the program under test then it is considered as

unresolved. After getting the information about the passed, failed

and unresolved subsets using tainting keys, MapRedDD uses the

delta debugging algorithm to further split the input into the subsets

and find the minimal failing input.

Let’s consider the previous integer count example again for our

MapRedDD algorithm. The program fails in the shown input due to

the presences of string “ABC" in the input set. MapRedDD divides

the input into two subsets and taint the inputs of both subsets so

that after running both subsets in the same execution of MapReduce

program, it can be detected that which subset caused the program

Figure 2: Technique Visualization

to fail. Both of these tainted input subsets then passed into the

MapRedDD framework which runs both of these subsets in same

MapReduce execution. By doing this MapRedDD efficiently reduces

the number of MapReduce executions from number of subsets

2N − 1 in worst case to the only number of inputs N. After the

execution of both these subsets, there might be failing, passing or

unresolved results. MapRedDD uses this information to further

split the input into subsets till the minimal failing input is found

from which removing any input will cause failure to disappear.

MapRedDD algorithm actually tries to find failure-inducing input

using an efficient algorithm which finds the failing input subset by

running multiple tainted input subsets in a single run of MapReduce

program.

3 RELATED WORK

This paper tries to reduce failure causes in MapReduce[4] programs

using previous work on delta debugging[6]. Finding minimal fail-

ing input in MapReduce programs using original delta debugging

algorithm is very expensive in terms of time and resource usage

which is efficiently solved using our proposed MapRedDD. There

is not a single work which tries to find the failure causes for the

MapReduce programs and all the previous efforts tries to test the

MapReduce programs either using mocking or unit testing.

Mockito[2] and PowerMock[3] are the famous mocking frame-

works used to create mock objects and verify the system behavior.

For example, Map and Reduce function write their output to context

object and mocking context object is used to verify whether the

map and reduce function are writing the output correctly.

Sometimes, mocking may not be sufficient and unit testing can

offer an additional level of coverage. Since the early days of MapRe-

duce programs, people have been trying to unit test MapReduce

programs but it remains the challenging task because Mapper and

Reducers run in distributed environment across many JVMs in

the cluster of machines[5]. MRUnit[1] is a Java library to unit test

MapReduce Jobs. It works in isolation and does not require MapRe-

duce demons to be running because distributed nature of MapRe-

duce programs add extra complexity. But this isolation also causes

the lack of interaction with cluster and distributed file system.

REFERENCES
[1] 2018. Apache MRUnit. https://mrunit.apache.org/. (2018).
[2] 2018. Mockito. https://code.google.com/p/mockito/. (2018).
[3] 2018. PowerMock. https://code.google.com/p/powermock/. (2018).
[4] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.
[5] Tom White. 2012. Hadoop: The Definitive Guide. " O’Reilly Media, Inc.".
[6] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200.

178


